Description
BIRKHAUSER BOSTON INC Planar Ising Correlations by John Palmer
Steady progress in recent years has been made in understanding the special mathematical features of certain exactly solvable models in statistical mechanics and quantum field theory, including the scaling limits of the 2-D Ising (lattice) model, and more generally, a class of 2-D quantum fields known as holonomic fields. New results have made it possible to obtain a detailed nonperturbative analysis of the multi-spin correlations. In particular, the book focuses on deformation analysis of the scaling functions of the Ising model, and will appeal to graduate students, mathematicians, and physicists interested in the mathematics of statistical mechanics and quantum field theory._x000D_ _x000D_
Preface * I. Ising Model on a Finite Square Lattice * II. Infinite Volume Limits * III. Scaling Limits * IV. Monodromy Preserving Deformations of the Euclidean Dirac Equation * V. Analysis of Tau Functions VI. Holonomic Quantum Fields * Appendix: Infinite Dimensional Spin Groups * Bibliography * Index_x000D_