Nonsmooth Analysis 2007 Edition at Meripustak

Nonsmooth Analysis 2007 Edition

Books from same Author: Winfried Schirotzek

Books from same Publisher: Springer

Related Category: Author List / Publisher List


  • Retail Price: ₹ 7815/- [ 11.00% off ]

    Seller Price: ₹ 6955

Sold By: T K Pandey      Click for Bulk Order

Offer 1: Get ₹ 111 extra discount on minimum ₹ 500 [Use Code: Bharat]

Offer 2: Get 11.00 % + Flat ₹ 100 discount on shopping of ₹ 1500 [Use Code: IND100]

Offer 3: Get 11.00 % + Flat ₹ 300 discount on shopping of ₹ 5000 [Use Code: MPSTK300]

Free Shipping (for orders above ₹ 499) *T&C apply.

In Stock

Free Shipping Available



Click for International Orders
  • Provide Fastest Delivery

  • 100% Original Guaranteed
  • General Information  
    Author(s)Winfried Schirotzek
    PublisherSpringer
    ISBN9783540713326
    Pages378
    BindingPaperback
    LanguageEnglish
    Publish YearSeptember 2007

    Description

    Springer Nonsmooth Analysis 2007 Edition by Winfried Schirotzek

    This book treats various concepts of generalized derivatives and subdifferentials in normed spaces, their geometric counterparts and their application to optimization problems. It starts with the subdifferential of convex analysis, passes to corresponding concepts for locally Lipschitz continuous functions and then presents subdifferentials for general lower semicontinuous functions. All basic tools are presented where they are needed: this concerns separation theorems, variational and extremal principles as well as relevant parts of multifunction theory. Each chapter ends with bibliographic notes and exercises. Table of contents :- Preliminaries.- The Conjugate of Convex Functionals.- Classical Derivatives.- The Subdifferential of Convex Functionals.- Optimality Conditions for Convex Problems.- Duality of Convex Problems.- Derivatives and Subdifferentials of Lipschitz Functionals.- Variational Principles.- Subdifferentials of Lower Semicontinuous Functionals.- Multifunctions.- Tangent and Normal Cones.- Optimality Conditions for Nonconvex Problems.- Extremal Principles and More Normals and Subdifferentials.