Non-Semisimple Topological Quantum Field Theories For 3-Manifolds With Corners 2001 Edition at Meripustak

Non-Semisimple Topological Quantum Field Theories For 3-Manifolds With Corners 2001 Edition

Books from same Author: Thomas Kerler, Volodymyr V. Lyubashenko

Books from same Publisher: Springer

Related Category: Author List / Publisher List


  • Retail Price: ₹ 5564/- [ 0.00% off ]

    Seller Price: ₹ 5564

Sold By: T K Pandey      Click for Bulk Order

Offer 1: Get ₹ 111 extra discount on minimum ₹ 500 [Use Code: Bharat]

Offer 2: Get 0.00 % + Flat ₹ 100 discount on shopping of ₹ 1500 [Use Code: IND100]

Offer 3: Get 0.00 % + Flat ₹ 300 discount on shopping of ₹ 5000 [Use Code: MPSTK300]

Free Shipping (for orders above ₹ 499) *T&C apply.

In Stock

Free Shipping Available



Click for International Orders
  • Provide Fastest Delivery

  • 100% Original Guaranteed
  • General Information  
    Author(s)Thomas Kerler, Volodymyr V. Lyubashenko
    PublisherSpringer
    ISBN9783540424161
    Pages383
    BindingPaperback
    LanguageEnglish
    Publish YearSeptember 2001

    Description

    Springer Non-Semisimple Topological Quantum Field Theories For 3-Manifolds With Corners 2001 Edition by Thomas Kerler, Volodymyr V. Lyubashenko

    d + 1-dimensional manifold, whose is a union of d-dimensional boundary disjoint v manifolds and d, a linear : -+ The manifold -Zod V(Md+l) V(Zod) V(Zld). ma- is with the orientation. The axiom in that z0g, Zod opposite gluing [Ati88] requires if we two such d + 1-manifolds a common d-subma- glue together along (closed) fold of in their the linear for the has to be the boundaries, composite compo- map tion of the linear of the individual d + 1-manifolds. maps the of and as in we can state categories functors, [Mac88], Using language axioms as follows: concisely Atiyah's very Definition 0.1.1 A in dimension d is a ([Ati88]). topological quantumfield theory between monoidal functor symmetric categories [Mac881 asfollows: V : --+ k-vect. Cobd+1 finite Here k-vect denotes the whose are dimensional v- category, objects for field tor over a field k, which we assume to be instance, a perfect, spaces The of of characteristic 0. set between two vector is morphisms, simply spaces the set of linear with the usual The has as composition. category Cobd+1 maps manifolds. such closed oriented d-dimensional A between two objects morphism.Zd d oriented d 1-- d-manifolds and is a + 1-cobordism, an + Zod meaning gMd+l = Zd is the d- mensional manifold, Md+l, whose Lj boundary _ZOd of the d-manifolds. consider union two we as joint (Strictly speaking morphisms cobordisms modulo relative Given another or homeomorphisms diffeomorphisms). Table of contents : and Summary of Results.- The Double Category of Framed, Relative 3-Cobordisms.- Tangle-Categories and Presentation of Cobordisms.- Isomorphism between Tangle and Cobordism Double Categories.- Monoidal categories and monoidal 2-categories.- Coends and construction of Hopf algebras.- Construction of TQFT-Double Functors.- Generalization of a modular functor.- From Quantum Field Theory to Axiomatics.- Double Categories and Double Functors.- Thick tangles.