Mathematical Methods Of Many-Body Quantum Field Theory (HB) at Meripustak

Mathematical Methods Of Many-Body Quantum Field Theory (HB)

Books from same Author: Lehmann

Books from same Publisher: Taylor & Francis

Related Category: Author List / Publisher List


  • Retail Price: ₹ 4995/- [ 11.00% off ]

    Seller Price: ₹ 4446

Sold By: T K Pandey      Click for Bulk Order

Offer 1: Get ₹ 111 extra discount on minimum ₹ 500 [Use Code: Bharat]

Offer 2: Get 11.00 % + Flat ₹ 100 discount on shopping of ₹ 1500 [Use Code: IND100]

Offer 3: Get 11.00 % + Flat ₹ 300 discount on shopping of ₹ 5000 [Use Code: MPSTK300]

Free Shipping (for orders above ₹ 499) *T&C apply.

In Stock

Free Shipping Available



Click for International Orders
  • Provide Fastest Delivery

  • 100% Original Guaranteed
  • General Information  
    Author(s)Lehmann
    PublisherTaylor & Francis
    Edition1st Edition
    ISBN9781584884903
    Pages264
    BindingHardcover
    LanguageEnglish
    Publish YearAugust 2004

    Description

    Taylor & Francis Mathematical Methods Of Many-Body Quantum Field Theory (HB) by Lehmann

    Mathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theory, functional integral methods, bosonic and fermionic, and estimation and summation techniques for Feynman diagrams. Among the physical effects discussed in this context are BCS superconductivity, s-wave and higher l-wave, and the fractional quantum Hall effect. While the presentation is mathematically rigorous, the author does not focus solely on precise definitions and proofs, but also shows how to actually perform the computations.Presenting many recent advances and clarifying difficult concepts, this book provides the background, results, and detail needed to further explore the issue of when the standard approximation schemes in this field actually work and when they break down. At the same time, its clear explanations and methodical, step-by-step calculations shed welcome light on the established physics literature.