Mathematical Methods In Aerodynamics at Meripustak

Mathematical Methods In Aerodynamics

Books from same Author: Dragos Lazar

Books from same Publisher: Springer India

Related Category: Author List / Publisher List


  • Retail Price: ₹ 995/- [ 13.00% off ]

    Seller Price: ₹ 866

Sold By: T K Pandey      Click for Bulk Order

Offer 1: Get ₹ 111 extra discount on minimum ₹ 500 [Use Code: Bharat]

Offer 2: Get 13.00 % + Flat ₹ 100 discount on shopping of ₹ 1500 [Use Code: IND100]

Offer 3: Get 13.00 % + Flat ₹ 300 discount on shopping of ₹ 5000 [Use Code: MPSTK300]

Free Shipping (for orders above ₹ 499) *T&C apply.

In Stock

Free Shipping Available



Click for International Orders
  • Provide Fastest Delivery

  • 100% Original Guaranteed
  • General Information  
    Author(s)Dragos Lazar
    PublisherSpringer India
    ISBN9788184894370
    Pages580
    BindingPaperback
    LanguageEnglish
    Publish YearJanuary 2010

    Description

    Springer India Mathematical Methods In Aerodynamics by Dragos Lazar

    The book provides a solid and unitary mathematical foundation of the basic and advanced principles of aerodynamics. The densities of the fundamental solutions are determined from singular integral equations. The fundamental solutions method in aerodynamics was considered for the first time and used by the author in over 30 papers published in prestigious journals (e.g. QAM, AIAA, ZAMM, etc) in order to develop a unitary theory. The boundary element method is used for numerical approximations in compressible aerodynamics. The text incorporates several original contributions, among other traditional mathematical methods. The book also represents a comprehensive presentation of research results since the seminal books on aerodynamics of Ashley and Landahl (1965) and Katz & Plotkin (1991). A rigorous mathematical approach is used to present and explain classic and modern results in this field of science. The author has therefore conceived several appendices on the Distribution Theory, the singular Integral Equations Theory, the Finite Part, Gauss Quadrature Formulae, etc. The book is concluded by a relevant bibliographical list which is especially useful for researchers. The book is aimed primarily at applied mathematicians, aeronautical engineers and space science researchers. The text may be used also as a comprehensive introduction to the mathematical foundations fo aerodynamics, by graduate students n engineering and fluid dynamics with a strong mathematical background.