Description
DOVER PUBLICATIONS Mathematical Conversations Multicolor Problems Problems In The Theory Of Numbers And Random Walks 2006 Edition by DYNKIN,E.B., USPENSKII,V.A.
Combining three books into a single volume, this text comprises Multicolor Problems, dealing with several of the classical map-coloring problems; Problems in the Theory of Numbers, an elementary introduction to algebraic number theory; and Random Walks, addressing basic problems in probability theory. The book's primary aim is not so much to impart new information as to teach an active, creative attitude toward mathematics. The sole prerequisites are high-school algebra and (for Multicolor Problems) a familiarity with the methods of mathematical induction. The book is designed for the reader's active participation. The problems are carefully integrated into the text and should be solved in order. Although they are basic, they are by no means elementary. Some sequences of problems are geared toward the mastery of a new method, rather than a definitive result, and others are practice exercises, designed to introduce new concepts. Complete solutions appear at the end. 0. ALGEBRAIC CONCEPTS. Sets. The Real Numbers. Integral Exponents. Radicals and Rational Expressions. Operations with Algebraic Expressions. Factoring. Algebraic Fractions. 1. LINEAR EQUATIONS AND FUNCTIONS. Solutions of Linear Equations and Inequalities in One Variable. Functions. Linear Functions. Graphs and Graphing Utilities. Solutions of Systems of Linear Equations. Applications of Functions in Business and Economics. 2. QUADRATIC AND OTHER SPECIAL FUNCTIONS. Quadratic Functions. Quadratic Functions: Parabolas. Business Applications of Quadratic Functions. Special Functions and Their Graphs. Modeling; Fitting Curves to Data with Graphing Utilities (Optional). 3. MATRICES. Matrices. Multiplication of Matrices. Gauss-Jordan Elimination: Solving Systems of Equations. Inverse of a Square Matrix; Matrix Equations. Applications of Matrices: Leontif Input-Output Models. 4. INEQUALITIES AND LINEAR PROGRAMMING. Linear Inequalities in Two Variables. Linear Programming: Graphical Methods. The Simplex Method: Maximization. The Simplex Method: Duality and Minimization. The Simplex Method with Mixed Constraints. 5. EXPONENTIAL AND LOGARITHMIC FUNCTIONS. Exponential Functions. Logarithmic Functions and Their Properties. Solutions of Exponential Equations: Applications of Exponential and Logarithmic Functions. 6. MATHEMATICS OF FINANCE. Simple Interest; Sequences. Compound Interest; Geometric Sequence. Future Value of Annuities. Present Value of Annuities. Loans and Amortization. 7. INTRODUCTION TO PROBABILITY. Probability; Odds. Unions and Intersections of Events: One-Trial Experiments. Conditional Probability: The Product Rule. Probability Trees and Bayes' Formula. Counting: Permutations and Combinations. Permutations, Combinations, and Probability. Markov Chains. 8. FURTHER TOPICS IN PROBABILITY. Binomial Probability Experiments. Data Descriptions. Discrete Probability Distributions; The Binomial Distribution. Normal Probability Distribution. The Normal Curve Approximation to the Binomial Distribution. 9. DERIVATIVES. Limits. Continuous Functions; Limits at Infinity. Average and Instantaneous Rates of Change: The Derivative. Derivative Formulas. The Product Rule and The Quotient Rule. The Chain Rule and the Power Rule. Using Derivative Formulas. Higher-Order Derivatives. Applications of Derivatives in Business and Economics. 10. APPLICATIONS OF DERIVATIVES. Relative Maxima and Minima: Curve Sketching. Concavity: Points of Inflection. Optimization in Business and Economics. Applications of Maxima and Minima. Rational Functions: More Curve Sketching. 11. DERIVATIVES CONTINUED. Derivatives of Logarithmic Functions. Derivatives of Exponential Functions. Implicit Differentiation. Related Rates. Applications in Business and Economics. 12. INDEFINITE INTEGRALS. The Indefinite Integral. The Power Rule. Integrals Involving Exponential and Logarithmic Functions. Applications of the Indefinite Integral in Business and Economics. Differential Equations. 13. DEFINITE INTEGRALS: TECHNIQUES OF INTEGRATION. Area Under a Curve. The Definite Integral: The Fundamental Theorem of Calculus. Area Between Two Curves. Applications of Definite Integrals in Business and Economics. Using Tables of Integrals. Integration by Parts. Improper Integrals and Their Applications. Numerical Integration Methods: Trapezoidal Rule and Simpson's Rule. 14. FUNCTIONS OF TWO OR MORE VARIABLES. Functions of Two or More Variables. Partial Differentiation. Applications of Functions of Two Variables in Business and Economics. Maxima and Minima. Maxima and Minima of Functions Subject to Constraints: Lagrange Multipliers.