Machine Learning for Factor Investing at Meripustak

Machine Learning for Factor Investing

Books from same Author: Coqueret Guillaume

Books from same Publisher: T&F/Crc Press

Related Category: Author List / Publisher List


  • Retail Price: ₹ 8196/- [ 0.00% off ]

    Seller Price: ₹ 8196

Sold By: T K Pandey      Click for Bulk Order

Offer 1: Get ₹ 111 extra discount on minimum ₹ 500 [Use Code: Bharat]

Offer 2: Get 0.00 % + Flat ₹ 100 discount on shopping of ₹ 1500 [Use Code: IND100]

Offer 3: Get 0.00 % + Flat ₹ 300 discount on shopping of ₹ 5000 [Use Code: MPSTK300]

Free Shipping (for orders above ₹ 499) *T&C apply.

In Stock

Free Shipping Available



Click for International Orders
  • Provide Fastest Delivery

  • 100% Original Guaranteed
  • General Information  
    Author(s)Coqueret Guillaume
    PublisherT&F/Crc Press
    Edition1st Edition
    ISBN9780367639723
    Pages358
    BindingSoftcover
    LanguageEnglish
    Publish YearAugust 2023

    Description

    T&F/Crc Press Machine Learning for Factor Investing by Coqueret Guillaume

    Machine learning (ML) is progressively reshaping the fields of quantitative finance and algorithmic trading. ML tools are increasingly adopted by hedge funds and asset managers, notably for alpha signal generation and stocks selection. The technicality of the subject can make it hard for non-specialists to join the bandwagon, as the jargon and coding requirements may seem out-of-reach. Machine learning for factor investing: Python version bridges this gap. It provides a comprehensive tour of modern ML-based investment strategies that rely on firm characteristics.The book covers a wide array of subjects which range from economic rationales to rigorous portfolio back-testing and encompass both data processing and model interpretability. Common supervised learning algorithms such as tree models and neural networks are explained in the context of style investing and the reader can also dig into more complex techniques like autoencoder asset returns, Bayesian additive trees and causal models.All topics are illustrated with self-contained Python code samples and snippets that are applied to a large public dataset that contains over 90 predictors. The material is available online so that readers can reproduce and enhance the examples at their convenience. If you have even a basic knowledge of quantitative finance, this combination of theoretical concepts and practical illustrations will help you learn quickly and deepen your financial and technical expertise.