How To Improve Your Memory For Study 1 at Meripustak

How To Improve Your Memory For Study 1

Books from same Author: Jonathan Hancock

Books from same Publisher: Pearson India

Related Category: Author List / Publisher List


  • Retail Price: ₹ 2366/- [ 0.00% off ]

    Seller Price: ₹ 2366

Sold By: T K Pandey      Click for Bulk Order

Offer 1: Get ₹ 111 extra discount on minimum ₹ 500 [Use Code: Bharat]

Offer 2: Get 0.00 % + Flat ₹ 100 discount on shopping of ₹ 1500 [Use Code: IND100]

Offer 3: Get 0.00 % + Flat ₹ 300 discount on shopping of ₹ 5000 [Use Code: MPSTK300]

Free Shipping (for orders above ₹ 499) *T&C apply.

In Stock

Free Shipping Available



Click for International Orders
  • Provide Fastest Delivery

  • 100% Original Guaranteed
  • General Information  
    Author(s)Jonathan Hancock
    PublisherPearson India
    Edition1st Edition
    ISBN9789332516946
    Pages644
    BindingPaperback
    LanguageEnglish
    Publish YearJanuary 2013

    Description

    Pearson India How To Improve Your Memory For Study 1 by Jonathan Hancock

    Covers ODEs and PDEs―in One TextbookUntil now, a comprehensive textbook covering both ordinary differential equations (ODEs) and partial differential equations (PDEs) didn’t exist. Fulfilling this need, Ordinary and Partial Differential Equations provides a complete and accessible course on ODEs and PDEs using many examples and exercises as well as intuitive, easy-to-use software. Teaches the Key Topics in Differential Equations The text includes all the topics that form the core of a modern undergraduate or beginning graduate course in differential equations. It also discusses other optional but important topics such as integral equations, Fourier series, and special functions. Numerous carefully chosen examples offer practical guidance on the concepts and techniques. Guides Students through the Problem-Solving Process Requiring no user programming, the accompanying computer software allows students to fully investigate problems, thus enabling a deeper study into the role of boundary and initial conditions, the dependence of the solution on the parameters, the accuracy of the solution, the speed of a series convergence, and related questions. The ODE module compares students’ analytical solutions to the results of computations while the PDE module demonstrates the sequence of all necessary analytical solution steps.