Higher Algebra (PB) at Meripustak

Higher Algebra (PB)

Books from same Author: Bernald

Books from same Publisher: AITBS Publishers

Related Category: Author List / Publisher List


  • Retail Price: ₹ 195/- [ 0.00% off ]

    Seller Price: ₹ 195

Sold By: T K Pandey      Click for Bulk Order

Offer 1: Get ₹ 111 extra discount on minimum ₹ 500 [Use Code: Bharat]

Offer 2: Get 0.00 % + Flat ₹ 100 discount on shopping of ₹ 1500 [Use Code: IND100]

Offer 3: Get 0.00 % + Flat ₹ 300 discount on shopping of ₹ 5000 [Use Code: MPSTK300]

Free Shipping (for orders above ₹ 499) *T&C apply.

In Stock

Shipping charge ₹ 75 for orders below 500



Click for International Orders
  • Provide Fastest Delivery

  • 100% Original Guaranteed
  • General Information  
    Author(s)Bernald
    PublisherAITBS Publishers
    ISBN9788174731593
    Pages585
    BindingSoftcover
    LanguageEnglish
    Publish YearJanuary 2014

    Description

    AITBS Publishers Higher Algebra (PB) by Bernald

    HIGHER ALGEBRA by S. BARNARD. First published in 1936. Contents include: ix CHAPTER EXERCISE XV ( 128). Minors, Expansion in Terms of Second Minors ( 132, 133). Product of Two Iteterminants ( 134). Rectangular Arrays ( 135). Reciprocal Deteyrrtlilnts, Two Methods of Expansion ( 136, 137). Use of Double Suffix, Symmetric and Skew-symmetric Determinants, Pfaffian ( 138-143), EXERCISE XVI ( 143) X. SYSTEMS OF EQUATIONS. Definitions, Equivalent Systems ( 149, 150). Linear Equations in Two Unknowns, Line at Infinity ( 150-152). Linear Equations in Three Unknowns, Equation to a Plane, Plane at Infinity ( 153-157). EXERCISE XVII ( 158). Systems of Equations of any Degree, Methods of Solution for Special Types ( 160-164). EXERCISE XVIII ( 164). XL RECIPROCAL AND BINOMIAL EQUATIONS. Reduction of Reciprocal Equations ( 168-170). The Equation x n - 1= 0, Special Roots ( 170, 171). The Equation x n - A = 0 ( 172). The Equation a 17 - 1 == 0, Regular 17-sided Polygon ( 173-176). EXERCISE XIX ( 177). AND BIQUADRATIC EQUATIONS. The Cubic Equation ( roots a, jS, y), Equation whose Roots are ( - y) 2, etc., Value of J, Character of Roots ( 179, 180). Cardan's Solution, Trigonometrical Solution, the Functions a - f eo/? - f-> V> a-f a> 2 4-a> y ( 180, 181). Cubic as Sum of Two Cubes, the Hessftfh ( 182, 183). Tschirnhausen's Transformation ( 186). EXERCISE XX ( 184). The Biquadratic Equation ( roots a, y, 8) ( 186). The Functions A= y + aS, etc., the Functions /, J, J, Reducing Cubic, Character of Roots ( 187-189). Ferrari's Solution and Deductions ( 189-191). Descartes' Solution ( 191). Conditions for Four Real Roots ( 192-ty). Transformation into Reciprocal Form ( 194). Tschirnhausen's Trans formation ( 195). EXERCISE XXI ( 197). OP IRRATIONALS. Sections of the System of Rationals, Dedekind's Definition ( 200, 201). Equality and Inequality ( 202). Use of Sequences in defining a Real Number, Endless Decimals ( 203, 204). The Fundamental Operations of Arithmetic, Powers, Roots and Surds ( 204-209). Irrational Indices, Logarithms ( 209, 210). Definitions, Interval, Steadily Increasing Functions ( 210). Sections of the System of DEGREES Real Numbers, the Continuum ( 211, 212). Ratio and Proportion, Euclid's Definition ( 212, 213). EXERCISE XXII ( 214). x CONTENTS CHAPTER XIV/ INEQUALITIES. Weierstrass' Inequalities ( 216). Elementary Methods ( 210, 217) For n Numbers a l9 a 2 a > * JACJJ n n n ( a* -!)/* ( a - I)/*, ( 219). xa x l ( a-b)$ a x - b x DEGREES xb x l ( a - 6), ( 219). ( l+ x) n DEGREES l+ nx, ( 220). Arithmetic and Geometric Means ( 221, 222). - - V DEGREES n and Extension ( 223). Maxima and Minima ( 223, 224). EXERCISE XXIII ( 224). XV. SEQUENCES AND LIMITS. Definitions, Theorems, Monotone Sequences ( 228-232). E* ponential Inequalities and Limits, l m / i n / l-m / 1 n 1) >(!+-) and ( 1--) n, m/ n/ mj nj / 1 n / l w lim ( 1-f-= lim( l--) = e, ( 232,233). n _ > 00 V nj nj EXERCISE XXIV ( 233). General Principle of Convergence ( 235-237). Bounds of a Sequent Limits of Inde termination ( 237-240). Theorems: ( 1) Increasing Sequence ( u n ), where u n - u n DEGREES l 0 and u n+ l lu n -* l, then u n n -* L ( 3) If lim u n l, then lim ( U