Description
Springer Data Mining A Knowledge Discovery Approach by Krzysztof J. Cios
This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area._x000D__x000D__x000D_The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material._x000D_ _x000D_
Data Mining and Knowledge Discovery Process.- The Knowledge Discovery Process.- Data Understanding.- Data.- Concepts of Learning, Classification, and Regression.- Knowledge Representation.- Data Preprocessing.- Databases, Data Warehouses, and OLAP.- Feature Extraction and Selection Methods.- Discretization Methods.- Data Mining: Methods for Constructing Data Models.- Unsupervised Learning: Clustering.- Unsupervised Learning: Association Rules.- Supervised Learning: Statistical Methods.- Supervised Learning: Decision Trees, Rule Algorithms, and Their Hybrids.- Supervised Learning: Neural Networks.- Text Mining.- Data Models Assessment.- Assessment of Data Models.- Data Security and Privacy Issues.- Data Security, Privacy and Data Mining._x000D_