Commutative Algebra through Exercises at Meripustak

Commutative Algebra through Exercises

Books from same Author: Andrea Bandini

Books from same Publisher: Springer

Related Category: Author List / Publisher List


  • Retail Price: ₹ 6519/- [ 7.00% off ]

    Seller Price: ₹ 6062

Sold By: T K Pandey      Click for Bulk Order

Offer 1: Get ₹ 111 extra discount on minimum ₹ 500 [Use Code: Bharat]

Offer 2: Get 7.00 % + Flat ₹ 100 discount on shopping of ₹ 1500 [Use Code: IND100]

Offer 3: Get 7.00 % + Flat ₹ 300 discount on shopping of ₹ 5000 [Use Code: MPSTK300]

Free Shipping (for orders above ₹ 499) *T&C apply.

In Stock

Free Shipping Available



Click for International Orders
  • Provide Fastest Delivery

  • 100% Original Guaranteed
  • General Information  
    Author(s)Andrea Bandini
    PublisherSpringer
    ISBN9783031569098
    Pages403
    BindingSoftcover
    Publish YearJuly 2024

    Description

    Springer Commutative Algebra through Exercises by Andrea Bandini

    This book provides a first introduction to the fundamental concepts of commutative algebra. What sets it apart from other textbooks is the extensive collection of 400 solved exercises, providing readers with the opportunity to apply theoretical knowledge to practical problem solving, fostering a deeper and more thorough understanding of the subject.The topics presented here are not commonly found in a single text. Consequently, the first part presents definitions, properties, and results crucial for understanding and solving the exercises, serving also as a valuable reference. The second part contains the exercises and a section titled with "True or False?" questions, which serves as a valid self-assessment test. Considerable effort has been invested in crafting solutions that provide the essential details, aiming for a well-balanced presentation. We intend to guide students systematically through the challenging process of writing mathematical proofs with formal correctness and clarity.Our approach is constructive, aiming to illustrate concepts by applying them to the analysis of multivariate polynomial rings and modules over a principal ideal domain (PID) whenever feasible. Algorithms for computing these objects facilitate the generation of diverse examples. In particular, the structure of finitely generated modules over a PID is analyzed using the Smith canonical form of matrices. Furthermore, various properties of polynomial rings are investigated through the application of Buchberger’s Algorithm for computing Gröbner bases.This book is intended for advanced undergraduates or master’s students, assuming only basic knowledge of finite fields, Abelian groups, and linear algebra. This approach aims to inspire the curiosity of readers and encourages them to find their own proofs while providing detailed solutions to support their learning. It also provides students with the necessary tools to pursue more advanced studies in commutative algebra and related subjects.